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a b s t r a c t 

Segmentation of brain structures from magnetic resonance (MR) scans plays an important role in the 

quantification of brain morphology. Since 3D deep learning models suffer from high computational cost, 

2D deep learning methods are favored for their computational efficiency. However, existing 2D deep 

learning methods are not equipped to effectively capture 3D spatial contextual information that is needed 

to achieve accurate brain structure segmentation. In order to overcome this limitation, we develop an 

Anatomical Context-Encoding Network (ACEnet) to incorporate 3D spatial and anatomical contexts in 2D 

convolutional neural networks (CNNs) for efficient and accurate segmentation of brain structures from 

MR scans, consisting of 1) an anatomical context encoding module to incorporate anatomical information 

in 2D CNNs and 2) a spatial context encoding module to integrate 3D image information in 2D CNNs. 

In addition, a skull stripping module is adopted to guide the 2D CNNs to attend to the brain. Extensive 

experiments on three benchmark datasets have demonstrated that our method achieves promising per- 

formance compared with state-of-the-art alternative methods for brain structure segmentation in terms 

of both computational efficiency and segmentation accuracy. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

Deep learning methods have achieved huge success in a variety 

f image segmentation studies, including brain structure segmen- 

ation from magnetic resonance (MR) scans ( Brosch et al., 2016 ; 

hen et al., 2017 ; Chen et al., 2018 ; Dai et al., 2019 ; Huo et al.,

019 ; Kamnitsas et al., 2017 ; Lafferty et al., 2001 ; Li et al., 2017 ;

oeskops et al., 2016 ; Wachinger et al., 2018 ; Zhang et al., 2018 ;

hang et al., 2015 ; Zhao et al., 2017 ; Zheng et al., 2015 ). Pre-

ious studies on the brain structure segmentation have favored 

olumetric segmentation based on 3D convolutional neural net- 

orks (CNNs) ( Brosch et al., 2016 ; Dai et al., 2019 ; Huo et al.,

019 ; Kamnitsas et al., 2017 ; Li et al., 2017 ; Moeskops et al.,

016 ; Wachinger et al., 2018 ; Zhang et al., 2015 ). These meth-

ds typically build deep learning models on overlapped 3D im- 

ge patches. In particular, DeepNAT was proposed to predict seg- 

entation labels of 3D image patches under a hierarchical classi- 
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cation and multi-task learning setting ( Wachinger et al., 2018 ); a 

D whole brain segmentation method was developed to segment 

he brain structures using spatially localized atlas network tiles 

SLANT) ( Huo et al., 2019 ); and a transfer learning method was 

eveloped to segment the brain structures by learning from par- 

ial annotations ( Dai et al., 2019 ). Although these 3D segmentation 

ethods have achieved promising segmentation performance, they 

re computationally expensive for both model training and infer- 

nce, and their applicability is potentially hampered by the mem- 

ry limitation of typical graphics processing units (GPUs). 

In order to improve the computational efficiency of deep 

earning models for the brain image segmentation, a variety 

f deep learning methods have been developed for segment- 

ng 2D image slices of 3D MRI brain images ( Roy et al., 2019 ;

oy et al., 2017 ; Roy et al., 2018 ), in addition to quantized

D neural networks ( Paschali et al., 2019 ). Particularly, Quick- 

AT ( Roy et al., 2019 ) was proposed to segment 2D brain 

mage slices in multiple views (Coronal, Axial, Sagittal) us- 

ng a modified U-Net framework ( Ronneberger et al., 2015 ) 

ith densely connected blocks ( Huang et al., 2017 ). Further- 

ore, a modified version was developed to improve its per- 

https://doi.org/10.1016/j.media.2021.101991
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2021.101991&domain=pdf
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ormance ( Roy et al., 2018 ) with a joint spatial-wise and 

hannel-wise Squeeze-and-Excitation (SE) module to fuse both 

patial and channel information within local receptive fields 

 Hu et al., 2018 ). These 2D segmentation methods could segment a 

hole brain image in ~20 seconds on a typical GPU. However, the 

D segmentation methods ignore intrinsic 3D contextual informa- 

ion of 3D brain MR images, which could potentially improve the 

egmentation performance if properly utilized. 

Most deep learning-based brain structure segmentation meth- 

ds focus on segmentation of coarse-grained brain structures, and 

t remains largely unknown if they work well for segmenting the 

RI brain images into fine-grained structures. Whereas the fine- 

rained brain structure segmentation could provide richer neu- 

oanatomy information than a coarse-grain brain structure seg- 

entation in neuroimaging studies of brain development, aging, 

nd brain diseases ( Li et al., 2019 ; Pomponio et al., 2019 ), it is more

hallenging as the fine-grained structures are relatively small and 

ith similar image appearances, especially for the 2D segmenta- 

ion methods that do not utilize 3D contextual information. 

To achieve fast and accurate segmentation of fine-grained brain 

tructures from MR scans, we develop a deep neural network 

or segmenting 2D slices of MR scans by integrating 3D spatial 

nd anatomical contexts in 2D CNNs, inspired by the success of 

eep learning with contextual information for image segmentation 

 Chen et al., 2017 ; Chen et al., 2018 ; Zhang et al., 2018 ; Zhao et al.,

017 ; Zhao et al., 2018 ; Zheng et al., 2015 ). Particularly, anatomical

ontext is encoded in 2D CNNs through an attention module with 

 global anatomy classification supervision and 3D spatial context 

s encoded in 2D multi-channel input of spatially consecutive im- 

ge slices. Additionally, the segmentation network also integrates 

 skull stripping auxiliary task to guide the network to focus on 

he brain structures. The method has been compared with state- 

f-the-art competing deep learning methods in terms of compu- 

ational efficiency and segmentation accuracy based on 3 pub- 

ic datasets, including 2012 Multi-Atlas Labeling Challenge (MALC) 

ataset ( Landman and Warfield, 2012 ), Mindboggle-101 dataset 

 Klein and Tourville, 2012 ), and Schizophrenia Bulletin (SchizBull) 

008 dataset ( Kennedy et al., 2012 ). Based on these datasets, 

e directly compared our method with Skip-DeconvNet (SD-Net) 

 Roy et al., 2017 ), 2D Unet ( Ronneberger et al., 2015 ), QuickNAT V2

 Roy et al., 2018 ), and 3D Unet ( Çiçek et al., 2016 ), with a focus on

ethods built upon 2D CNNs for computational efficiency. We also 

eported image segmentation performance of MO-Net ( Dai et al., 

019 ), SLANT ( Huo et al., 2019 ), 3DQuantized-Unet ( Paschali et al.,

019 ), and DeepNAT ( Wachinger et al., 2018 ) that were evaluated 

n the 2012 MALC dataset with the same training and testing im- 

ges, except SLANT. Source code of this study is available at https: 

/github.com/ymli39/ACEnet- for- Neuroanatomy-Segmentation . 

. Methods 

We develop a deep learning method, referred to as Anatomy 

ontext-Encoding network (ACEnet), for segmenting both coarse- 

rained and fine-grained anatomical structures from brain MR 

cans. ACEnet is a 2D network for segmenting brain MR scans slice 

y slice. As illustrated in Fig. 1 -(a), ACEnet is built upon a densely

onnected encoder-decoder backbone, consisting of 1) a 3D spatial 

ontext encoding module as shown in Fig. 1 -(b) to integrate spatial 

ppearance information using 2D CNNs; 2) an anatomical context 

ncoding module as shown in Fig. 1 -(c) to incorporate anatomical 

nformation in 2D CNNs with a classification loss of brain struc- 

ures; and 3) a skull stripping module as shown in Fig. 1 -(d) to

uide 2D CNNs to attend the brain. Image features learned by these 

D CNNs are finally fused to segment brain structures as illustrated 

n Fig. 1 -(e). In the present study, we focus on image slices in coro-
2 
al plane. For clarity, we use “3D” to denote input of a stack of 

ultiple 2D slices to 2D CNNs hereafter. 

.1. Network backbone 

The network backbone is an U-Net ( Ronneberger et al., 2015 ) 

ith 4 densely connected blocks for both the encoder and the 

ecoder, as illustrated in Fig. 1 -(a). Each dense block contains 2 

added 5 × 5 convolutions followed by a 1 × 1 convolution layer. 

articularly, max-pooling layers are adopted in the encoder blocks 

nd up-sampling layers are adopted in the decoder blocks. Skip 

onnections are adopted between the encoder and the decoder 

locks with the same spatial dimensions. To fuse both spatial-wise 

nd channel-wise information within local receptive fields, spatial 

nd channel Squeeze-and-Excitation (sc-SE) ( Roy et al., 2018 ) is ap- 

lied to each encoder, bottleneck, and decoder dense blocks. The 

c-SE is built upon Spatial Squeeze and Channel Excitation (c-SE) 

 Hu et al., 2018 ) and Channel Squeeze and Spatial Excitation (s-SE) 

 Roy et al., 2018 ) that are fused by a Max-Out operation to effec-

ively learn both spatial-wise and channel-wise information. The c- 

E block has a hyper-parameter r that was set to 2 in the present 

tudy for all experiments as suggested in ( Roy et al., 2018 ). In this

ackbone setting, our goal is to learn image features for effective 

rain structure segmentation. 

.2. Spatial context encoding module 

To utilize 3D spatial information of MR scans in ACEnet, 3D im- 

ge blocks of consecutive image slices are used as input to the spa- 

ial context encoding module, as illustrated in Fig. 1 -(b). The con- 

ecutive image slices are regarded as a stack of 2D images with di- 

ensions of H × W × C, where H and W are spatial dimensions of 

he 2D image slices and C is the number of 2D image slices, rather 

han as a 3D volume with dimensions of H × W × C × 1 . There- 

ore, the input to the spatial context encoding module is of the 

ame dimensions as the 2D input. Particularly, we set C = 2 s + 1 ,

here s is the number of consecutive 2D image slices stacked on 

op and bottom of the center slice that is the image slice to be seg-

ented. For an image slice without top or bottom adjacent slices, 

e used the image slice itself as its adjacent slices. Instead of di- 

ectly implementing a 3D CNN module, which is computationally 

xpensive, the spatial context encoding module acquires intrinsic 

patial context information with less computation cost. This mod- 

le takes the 3D input to the encoder and outputs 2D feature rep- 

esentation with 3D spatial context that is used as input to the 

natomical context encoding module ( Fig. 1 -(c)) and the decoder. 

.3. Anatomical context encoding module 

The anatomical context encoding module is developed to in- 

egrate global anatomical information in ACEnet. As illustrated in 

ig. 1 -(c), the output of the network bottleneck is used as input 

o the anatomical context encoding module, consisting of a con- 

olutional block, referred to as encoding layer, a fully connected 

ayer, and an activation function. The anatomical context encoding 

odule is applied to output of the network bottleneck that con- 

ains high level information learned from the data with a reduced 

imensionality. The anatomical context is learned through the en- 

oding layer and is then passed through the fully connected layer 

ollowed by a sigmoid activation function that detects the presence 

f specific brain structures in the center slice of the input. Partic- 

larly, the detection of the presence of specific brain structures is 

ormulated as a classification problem with an anatomical context 

ncoding loss (ACE-loss) to optimize the network under a direct 

upervision. It specifically focuses on the brain structures present 

n the 3D input’s center image slice under consideration, rather 

https://github.com/ymli39/ACEnet-for-Neuroanatomy-Segmentation
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Fig. 1. A schematic flowchart of Anatomy Context-Encoding network. (a) A Dense-UNet backbone. (b) A Spatial Context Encoding Module with a 3D image volume as 

its input. (c) An Anatomical Context Encoding Module contains a context encoder to capture anatomical context. (d) A Skull Striping Module to enforce the network to 

specifically focus on the brain. Particularly, the spatial encoding module captures 3D features from the input using 2D CNNs. The context encoder captures anatomical 

context to highlight brain structure-dependent variation by optimizing an Anatomical Context Encoding Loss. The spatial and anatomical semantics (e) and skull stripping 

features (d) are fused by an element-wise multiplication operation to generate accurate brain structure segmentation result. 
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han all the brain structures to be segmented. The output of the 

natomical context encoder is referred to as encoded anatomical 

ontext. 

To facilitate the semantic segmentation, the encoded anatomi- 

al context is utilized to extract the global semantic context repre- 

ented by a scaling attention factor as shown in Fig. 1 . This scaling

ttention factor, denoted by γ , is the output of a sigmoid func- 

ion σ (·) , i.e., γ = σ ( W e ) , where W is the layer weight and e is

he encoded anatomical context. This scaling attention factor pro- 

ides the network with the global anatomical context to squeeze 

he intensity ambiguity between brain structures with similar ap- 

earances, and to selectively highlight the learned feature maps 

ssociated with specific brain structures present in the input of 

D image block’s center slice. This scaling factor is also utilized 

o recalibrate the decoded output, calculated as Y = X � γ , where 

denotes feature maps generated from the decoder and � is a 

hannel-wise multiplication. We refer to this recalibrated output 

s fused semantics. 

.4. Skull stripping module 

In order to guide the brain structure segmentation network to 

ocus on the brain structures, rather than non-brain structures such 

s nose and neck region, we include a skull stripping module as an 

uxiliary task to extract the brain from MR scans, as illustrated in 

ig. 1 -(d). The first three decoders of the Skull Stripping Module 

hare the same weight as the model backbone’s decoders and only 

ts last decoder block is trained with separate weight parameters 

o reduce the model complexity. The skull stripping module learns 

nformative features in a supervised manner with a skull stripping 

oss function. The learned image features are combined with the 

ecalibrated output as illustrated in Fig. 1 -(e) to generate the brain 

tructure segmentation labels. 

.5. Loss function 

We use three loss functions to train the network, including (i) 

 pixel-wise cross-entropy loss L ce , (ii) a multi-class Dice loss L dice , 

nd (iii) an anatomical context encoding classification loss L sec . The 

ixel-wise cross-entropy loss measures similarity between output 

egmentation labels and manual labeled ground truth ( Shore and 
3 
ohnson, 1980 ). Denote the estimated probability of a pixel x be- 

onging to a class l by p l (x ) and its ground truth label by g l (x ) ,

he pixel-wise cross-entropy loss is: 

 ce = −
∑ 

x 

g l ( x ) log ( p l ( x ) ) . 

The multi-class Dice score is often used as an evaluation metric 

n image segmentation studies. In the present study, we include 

he multi-class Dice loss function to overcome class-imbalance 

roblem ( Roy et al., 2019 ; Roy et al., 2017 ), which is formulated

s: 

 dice = − 2 

∑ 

x p l ( x ) g l ( x ) ∑ 

x p 
2 
l 
( x ) + 

∑ 

x g 
2 
l 
( x ) 

. 

he anatomical context encoding loss is used to incorporate 

natomical information in 2D CNNs so that the network focuses on 

pecific brain structures present in the input of 3D image block’s 

enter slice: 

 sec = −1 

C 

C ∑ 

i =1 

y i · log ( p ( y i ) ) + ( 1 − y i ) · log ( 1 − p ( y i ) ) , 

here C is the number of classes of brain structures, y i is the 

round truth that a specific brain structure is present or not in 

he input of 3D image block’s center slice, and p(y ) is the pre- 

icted probability of the presence of that specific brain structure. 

his loss is adopted to learn the anatomical context as illustrated 

n Fig. 1 -(c). 

Both L ce and L dice loss functions are applied to the skull strip- 

ing module for skull stripping as L N skull 
, and fused structural seg- 

entation prediction as L N brain 
. Therefore, the overall loss is formu- 

ated as: 

 total = L c e skull 
+ L dic e skull 

+ L c e brain 
+ L dic e brain 

+ λL sec , 

here λ = 0.1 is a weighting factor as suggested in ( Zhang et al.,

018 ). 

.6. Implementation details 

Our 2D CNN network takes a 3D image volume as multiple 

hannels of 256 × 256 × ( 2 s + 1 ) as inputs, all in coronal view. 
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e employed a learning rate scheduling “poly” that is updated at 

ach iter step as l r = basel r × ( 1 − iter 
ite r total 

) power ( Chen et al., 2017 ),

here baselr is the initial learning rate. We set power to 0.9 as 

uggested in ( Zhang et al., 2018 ). We trained our model in two

tages as detailed in ablation studies. In the first stage, we chose an 

nitial learning rate of 0.01 and 0.02 for segmenting coarse-grained 

tructures and fine-grained structures, respectively. In the second 

tage, we set the initial learning rate to 0.01 for both tasks. Both 

re-trained and fine-tuned model were trained for 100 epochs. In 

oth the stages, we utilized the SGD optimizer with a momen- 

um of 0.9 and a weight decay rate of 1 × 10 −4 . We used batch

ize of 6 to use all available GPU memory of a Titan XP GPU. The

ropout rate of 0.1 was applied to each densely connected block 

 Srivastava et al., 2014 ). All experiments were performed on a sin- 

le NVIDIA TITAN XP GPU with 12GB of RAM. It took ~9 seconds 

o obtain both brain structure segmentation and skull-stripping re- 

ults from an MRI scans of 256 × 256 × 256 on a NVIDIA TITAN 

P GPU. 

. Experimental datasets and settings 

.1. Imaging datasets 

We evaluated our method based on three public datasets with 

anually labeled coarse-grained or fine-grained brain structures, 

s detailed following. 

(i) 2012 Multi-Atlas Labeling Challenge (MALC): This dataset 

ontains MRI T1 scans from 30 subjects with manual annotations 

or the whole brain, including 27 coarse-grained structures and 

34 fine-grained structures ( Landman and Warfield, 2012 ). In stud- 

es of segmenting coarse-grained brain structures we focused on 

ll available coarse-grained brain structures, and in studies of seg- 

enting fine-grained brain structures we focused on 133 fine- 

rained structures following BrainColor protocol ( Klein et al., 2010 ). 

his challenge dataset also provides a list of 15 training subjects 

nd a list of 15 testing subjects. The same training and testing data 

etting was used in our experiments to train and evaluate deep 

earning segmentation models. 

Based on the 2012 MALC training scans, we generated an aug- 

ented training data set. Particularly, we applied deformable reg- 

stration to warp the training images and their corresponding seg- 

entation labels to twenty 1.5 T MR images, randomly selected 

rom Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset 

 Petersen et al., 2010 ). In total, 300 warped images and segmenta- 

ion label images were obtained as the augmented training dataset. 

(ii) Mindboggle-101: This dataset contains MRI T1 scans from 

01 healthy subjects with 63 manual annotated brain structures 

 Klein and Tourville, 2012 ). In the present study, we randomly split 

he dataset into training (60%), validation (10%), and test (30%) sets. 

he best validation model was utilized for testing. 

(iii) Schizophrenia Bulletin (SchizBull) 2008: This dataset is part 

f the Child and Adolescent Neuro Development Initiative (CANDI) 

ataset, consisting of MRI T1 scans from 103 subjects with 32 man- 

al labeled brain structures ( Kennedy et al., 2012 ). In the present 

tudy, we randomly split the data into training (60%), validation 

10%) and test (30%) set. The best validation model was utilized for 

esting. 

In our experiments, all the images were resampled into 

n isotropic volume of 1 m m 

3 by “mri_convert” of FreeSurfer 

 Fischl, 2012 ). No other preprocessing procedures were applied to 

hese images. The binary brain masks obtained from FreeSurfer 

reprocessing are used as ground truth brain regions for training 

nd evaluation in skull stripping stage. We carried out ablation 

tudies to evaluate how different com ponents of our method con- 

ribute to the segmentation based on three benchmark datasets. 
4 
.2. Ablation studies 

A baseline of the present study was an improved version of 

uickNAT ( Roy et al., 2019 ) with sc-SE blocks ( Roy et al., 2018 ),

eferred to as QuickNAT V2, which was built upon the same Dense 

-Net structure as ACEnet. In the ablation studies, the batch size 

f different deep learning models was set to use all available GPU 

emory of a Titan XP GPU. 

We first evaluated if the pixel-wise cross-entropy loss with 

he class weights could improve the segmentation performance, in 

onjunction with different settings of the anatomical context en- 

oding module and the spatial context encoding module. As pro- 

osed in QuickNAT ( Roy et al., 2019 ), frequencies of voxel-wise seg- 

entation labels of the training can be used as class weights in the 

ixel-wise cross-entropy loss. The class weight ω(x ) of a pixel x is 

omputed as: 

 ( x ) = 

∑ 

l 

I ( S ( x ) = l ) 
median ( f ) 

f l 
+ ω 0 · � ( | ∇S ( x ) | > 0 ) 

here f denotes a vector of frequencies of all voxel-wise segmen- 

ation labels, l denotes a specific segmentation label, and f l de- 

otes its frequency in the training data, � is an indicator function, 

is the ground truth segmentation label map, ∇ is 2D gradient 

perator, and ω 0 = 

2 · median ( f ) 
f l 

. 

We then investigated the effectiveness of 1) anatomical context 

ncoding module, 2) spatial context encoding module, and 3) skull 

tripping module. Particularly, we adopted the anatomical context 

ncoding module in six models with different inputs as well as 

ith and without the skull stripping module on three benchmark 

atasets. We studied various spatial context learned from inputs of 

) single 2D image slice, 2) a stack of multiple 2D image slices, and 

) two parallel encoders with inputs of single 2D image slice and a 

tack of 2D image slices respectively, and the two sets of encoded 

utput features were concatenated after their specific bottleneck 

locks. We incorporated the spatial context with and without skull 

tripping module to evaluate how the skull stripping module af- 

ects the overall segmentation performance. 

To comprehend how the sc-SE blocks modulate image features 

earned by the densely connected blocks of CNNs in ACEnet, we 

enerated feature maps and attention maps for each encoder and 

ach decoder to visualize attention maps and image features before 

nd after the sc-SE blocks ( Roy et al., 2018 ; Schlemper et al., 2018 ).

ince all the input and output image features of the encoders and 

ecoders are multi-channel features, we obtained absolute values 

f image features averaged out across channels to visualize image 

eatures learned by different network blocks. Since the spatial-wise 

nd channel-wise attention blocks integratively modulate the im- 

ge features and the channel-wise attention is characterized by a 

ector, we generated spatial-wise attention maps and did not visu- 

lize the channel-wise attention vectors. 

We investigated how the parameter s in the spatial context en- 

oding module affects the segmentation performance, and we also 

valuated networks built with different values of s using the end- 

o-end training setting with the presence of the anatomical context 

ncoding module and skull stripping module. 

Moreover, we investigated the effectiveness of the end-to-end 

raining and two-stage training strategies. For the two-stage set- 

ing, we trained our model by utilizing only fused semantics out- 

uts ( Fig. 1 -(e)) without skull stripping module ( Fig. 1 -(d)) in the

rst stage; in the second stage we incorporated the pre-trained 

eights obtained in the first training stage in the proposed archi- 

ecture and fine-tuned the whole network with the skull stripping 

odule as an auxiliary task. In this ablation study, the end-to-end 

odel was trained with the same number of total epochs (200 

pochs) as the two-stage training strategy 
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.3. Comparison with state-of-the-art competing methods 

We directly compared our method with state-of-the-art com- 

eting deep learning methods on the three datasets with 

he same model training and test settings, including SD-Net 

 Roy et al., 2017 ), 2D U-Net ( Ronneberger et al., 2015 ), QuickNAT

2 ( Roy et al., 2018 ), and 3D U-Net ( Çiçek et al., 2016 ). All these

ethods were implemented with the same network architectures 

s reported in their corresponding papers, except that 256 filters 

ere used in the 3D U-Net instead of 1024 for reducing the com- 

utational cost. 

We also reported image segmentation performance of MO-Net 

 Dai et al., 2019 ), SLANT ( Huo et al., 2019 ), 3DQuantized-Unet

 Paschali et al., 2019 ), and DeepNAT ( Wachinger et al., 2018 ) that

ere evaluated on the 2012 MALC dataset for segmenting ei- 

her coarse-grained or fine-grained brain structures with the same 

raining and testing images, expect SLANT models which were 

rained on a larger training dataset. 

.4. Quantitative evaluation metrics 

The image segmentation performance was evaluated on the 

esting data using Dice Score, Jaccard Index, and Hausdorff dis- 

ance between the ground truth and automatically segmented 

rain structures ( Hao et al., 2014 ; Zheng et al., 2018 ). Two-side

ilcoxon signed rank tests were adopted to compare ACEnet and 

uickNAT V2 in terms of Dice scores of individual brain structures. 

. Results 

.1. Ablation studies on loss function, anatomical context, spatial 

ontext, and skull stripping 

ACEnet’s backbone is a U-Net architecture, consisting of 4 

ensely connected blocks for both the encoder and the decoder, 

he exactly same architecture used in QuickNAT V2 ( Roy et al., 

018 ) and serving as the baseline in our experiments. All en- 

oder, bottleneck, and decoder dense blocks contain the sc-SE 

odule ( Roy et al., 2018 ). Table 1 summarizes segmentation per- 

ormance for segmenting coarse-grained brain structures on the 

012 MALC testing data obtained by deep learning models with 

ifferent settings of the loss function, anatomical context encod- 

ng module, and spatial context encoding module. The segmenta- 

ion models built with the pixel-wise cross-entropy loss without 

he class weights had better performance than their counterparts 

ith the class weights in the pixel-wise cross-entropy loss func- 

ion for the baseline models (top two rows), the baseline models 

ith anatomical context (middle two rows), and the models with 

oth spatial and anatomical context (bottom two rows). In all fol- 

owing experiments, the pixel-wise cross-entropy loss without the 

lass weights was used. The results summarized in Table 1 also 
Table 1 

Dice scores of ACEnet with different settings and its baselines on the 

2012 MALC test data with 27 coarse-grained segmentation structures. 
√ 

indicates presence of the entry, s is the consecutive image slices, E context : 

Contextual Encoding Module. 

Inputs E context Class Weight Batch size Dice Score 

S = 0 S = 5 

√ √ 

10 0.851 √ 

10 0.876 √ √ √ 

8 0.870 √ √ 

8 0.887 √ √ √ 

6 0.867 √ √ 

6 0.885 
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5 
ndicated that the anatomical context encoding module improved 

he segmentation performance for the baseline models. 

Fig. 2 shows representative spatial-wise attention maps of the 

c-SE blocks and maps of image features before and after mod- 

lation by the sc-SE blocks for segmenting coarse-grained brain 

tructures on the 2012 MALC data set. Specifically, image features 

f a randomly selected image slice (top row) were used as input 

o densely-connected blocks to generate new image features that 

ere subsequently modulated by the sc-SE blocks (their spatial- 

ise attention maps are shown on the middle row) to yield mod- 

lated image features (bottom row). Although the attention maps 

ad varied spatial patterns at different encoders and decoders, they 

ncreased contrasts between background and brain tissues of the 

eature maps, which subsequently improved the segmentation per- 

ormance as supported by the quantitative results summarized in 

ables 1 and 2 . 

Table 2 summarizes segmentation performance of deep learn- 

ng models built with the anatomical context encoding module in 

onjunction with different settings of the spatial context encod- 

ng module and the skull stripping module. These results indicated 

hat the combination of the anatomical context encoding mod- 

le, the spatial context encoding module, and the skull stripping 

odule achieved the best segmentation performance on SchizBull 

008, 2012 MALC (133 structures), and Mindboggle-101 data sets. 

he parallel encoders with inputs of single 2D image slice and 

 stack of 2D image slices could further improve the segmenta- 

ion performance on the dataset of 2012 MALC (27 structures) and 

chieved the best performance in conjunction with the skull strip- 

ing module. However, the parallel encoders did not improve the 

ne-grained brain structure segmentation. 

To investigate how the parameter s in the spatial context en- 

oding module affects the segmentation performance, we evalu- 

ted deep learning models built with different values of s using 

he end-to-end training setting with the presence of the anatom- 

cal context encoding module and the skull stripping module. As 

ummarized in Table 3 , the best performance for both the coarse- 

rained segmentation and fine-grained segmentation on the 2012 

ALC dataset were achieved with s = 5 . This value was adopted in 

ll following experiments for the coarse-grained and fine-grained 

egmentation studies. 

.2. Ablation study on training strategies 

Table 4 summarizes segmentation performance of the deep 

earning models trained using different training strategies. These 

esults indicated that the end-to-end model yielded better results 

han the model without the skull stripping module obtained in the 

rst stage, and the model obtained in the second stage obtained 

he best performance. We adopted the two-stage training strategy 

n all following experiments. 

.3. Model complexity 

We compared model complexity between baseline ( Roy et al., 

018 ) and models with our proposed modules (all included the 

ontext Encoding Module) based on images of 256 × 256 . As 

ummarized in Table 5 , the baseline model with an input of single 

mage slice had 3 . 551 × 10 6 parameters, and the Context Encoding 

odule added 4 . 38 × 10 5 (an increase of 12.3%) parameters to the 

aseline model. Since the skull stripping module shares the first 

hree decoders with the backbone’s decoders, it added 2 × 10 4 (an 

ncrease of 0.05%) parameters to a model with the Context Encod- 

ng Module. 

An input of the stacked image volumes ( s = 5 ) had 1 . 52 × 10 5 

ore (an increase of 3.8%) parameters than the input of single im- 

ge slice ( s = 0 ) . The parallel encoders increase the model com- 
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Fig. 2. Visualization of (a) input feature maps, (b) spatial-wise attention maps and (c) output feature maps learned from encoders and decoders of ACEnet for segmenting 

coarse-grained brain structures on the 2012 MALC data set. Intensity values of all the feature maps and spatial attention maps were normalized into the range of 0 to 1. The 

first input features were the input image slices. 

Table 2 

Dice scores of ACEnet with different modules on three benchmark datasets. s is the number of consecutive 2D image slices stacked on top and bottom of the center slice. 

s = 0 & s = 5 indicates the presence of two parallel encoders with inputs of a single slice and a stack of multiple slices, respectively. 

Datasets s = 0 s = 0 with skull 

stripping 

s = 5 s = 5 with skull 

stripping 

s = 0 & s = 5 s = 0 & s = 5 with skull 

stripping 

2012 MALC (27 structures) 0.887 ± 0.065 0.888 ± 0.062 0.885 ± 0.065 0.885 ± 0.065 0.888 ± 0.066 0.890 ± 0.062 

SchizBull 2008 0.867 ± 0.093 0.870 ± 0.092 0.872 ± 0.090 0.872 ± 0.089 0.869 ± 0.092 0.872 ± 0.092 

2012 MALC (133 

structures) 

0.734 ± 0.159 0.739 ± 0.148 0.737 ± 0.164 0.746 ± 0.143 0.742 ± 0.146 0.743 ± 0.143 

Mindboggle-101 0.792 ± 0.079 0.799 ± 0.078 0.815 ± 0.075 0.820 ± 0.076 0.795 ± 0.077 0.797 ± 0.077 

Table 3 

Segmentation performance (mean ±standard deviation of Dice Score) of 

our method on the 2012 MALC testing dataset with different values of 

slice number s in the spatial context encoding module. 

2012 MALC (27 structures) 2012 MALC (133 structures) 

S = 1 0.885 ± 0.063 0.741 ± 0.148 

S = 3 0.885 ± 0.069 0.743 ± 0.145 

S = 5 0.885 ± 0.065 0.746 ± 0.143 

S = 7 0.883 ± 0.080 0.741 ± 0.149 

S = 9 0.884 ± 0.068 0.744 ± 0.147 
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lexity substantially, with an increase of 41.7% and 36.5% in the 

umber of parameters compared with the models with s = 0 and 

 = 5 respectively. However, their segmentation performance did 

ot increase with the number of parameters, except on the 2012 

ALC dataset for segmenting coarse-grained brain structures, as 

ndicated by the results summarized in Table 2 . 

Overall, the model, with the anatomical context encoding mod- 

le, the skull stripping module, and the spatial context encoding 
6 
odule (a stack of image slices with s = 5 ) obtained the best seg-

entation performance at a computation cost of 16.6% increase in 

he number of parameters compared with the baseline model. 

.4. Comparison with competing methods for segmenting 

oarse-grained brain structures 

Tables 6 and 7 summarize segmentation performance obtained 

y competing methods under comparison for segmenting coarse- 

rained brain structures on the 2012 MALC dataset and the 

chizBull 2008 dataset, respectively. As summarized in Table 6 , 

CEnet obtained a mean Dice Score of 0.891, an improvement of 

.7% compared with the second best method, i.e., QuickNAT V2. 

he data augmentation further improved our method though the 

mprovement was moderated. As summarized in Table 7 , ACEnet 

lso obtained the best segmentation performance on the SchizBull 

008 dataset with an improvement of 2.2% compared with the 

econd-best method, i.e., QuickNAT V2. Interestingly, the methods 

uilt upon 2D CNNs obtained better performance than those build 

pon 3D CNNs for segmenting coarse-grained brain structures. 
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Table 4 

Segmentation performance (mean ±standard deviation of Dice Score) of our methods with different training 

strategies. 

Datasets First Stage End-to-End Two Stages 

2012 MALC (27 structures) 0.885 ± 0.065 0.885 ± 0.065 0.891 ± 0.057 

SchizBull 2008 0.872 ± 0.090 0.872 ± 0.089 0.881 ± 0.074 

2012 MALC (133 structures) 0.737 ± 0.164 0.746 ± 0.143 0.762 ± 0.136 

Mindboggle-101 0.815 ± 0.075 0.820 ± 0.076 0.825 ± 0.074 

Table 5 

Model complexity. S is the number of consecutive 2D image slices stacked on top and bottom of the center slice. & indicates the presence of two parallel 

encoders which take both inputs of a single slice and a stack of 2.5D stack of images. 

Models baseline s = 0 

s = 0 with skull 

stripping s = 5 

s = 5 with skull 

stripping 

s = 0 & 

s = 5 

s = 0 & s = 5 with 

skull stripping 

Number of 

parameters 

3 . 551 ×
10 6 

3 . 989 ×
10 6 

3 . 991 × 10 6 4 . 141 ×
10 6 

4 . 142 × 10 6 5 . 653 ×
10 6 

5 . 655 × 10 6 

Table 6 

Comparison of deep learning methods for segmenting coarse-grained brain structures based on the 2012 

MALC testing dataset, including segmentation accuracy measured by Dice score and the number of parameters 

in each model. − indicates parameters are not reported in their respective papers, † indicates segmentation 

performance obtained from their respective papers, and ∗ indicates a model trained with data augmentation. 

Methods CNNs Parameters Dice Score (mean ±standard 

deviation) 

3D U-Net ( Çiçek et al., 2016 ) 3D 6 . 4 4 4 × 10 6 0.859 ± 0.082 

SLANT8 ( Huo et al., 2019 ) † 3D − 0.817 ± 0.036 

SLANT27 ( Huo et al., 2019 ) † 3D − 0.823 ± 0.037 

MO-Net ( Dai et al., 2019 ) † 3D − 0.838 ± 0.049 

3DQuantized-Unet ( Paschali et al., 2019 ) † 3D 2 . 0 × 10 6 0.844 ± 0.006 

DeepNAT ( Wachinger et al., 2018 ) † 3D 2 . 7 × 10 6 0.894 

SD-Net ( Roy et al., 2017 ) † 2D − 0.850 ± 0.080 

SD-Net ( Roy et al., 2017 ) 2D 5 . 7 × 10 5 0.860 ± 0.097 

U-Net ( Ronneberger et al., 2015 ) 2D 5 . 178 × 10 6 0.869 ± 0.080 

QuickNAT ( Roy et al., 2019 ) 2D 3 . 551 × 10 6 0.874 ± 0.067 

QuickNAT V2 ( Roy et al., 2018 ) 2D 3 . 551 × 10 6 0.876 ± 0.067 

ACEnet 2D 4 . 142 × 10 6 0.891 ± 0.057 

ACEnet ∗ 2D 4 . 142 × 10 6 0.897 ± 0.057 

Table 7 

Comparison of deep learning methods for segmenting coarse-grained brain structures on the SchizBull 

2008 testing dataset. 

Methods CNNs Parameters Dice Score (mean ±standard deviation) 

U-Net ( Çiçek et al., 2016 ) 3D 6 . 4 4 4 × 10 6 0.857 ± 0.097 

SD-Net ( Roy et al., 2017 ) 2D 5 . 7 × 10 5 0.856 ± 0.098 

U-Net ( Ronneberger et al., 2015 ) 2D 5 . 178 × 10 6 0.862 ± 0.096 

QuickNAT V2 ( Roy et al., 2018 ) 2D 3 . 551 × 10 6 0.862 ± 0.095 

ACEnet 2D 4 . 142 × 10 6 0.881 ± 0.074 

Table 8 

Segmentation performance (mean ±standard deviation) of our methods and QuickNAT V2 on two coarse-grained 

benchmark datasets. Skull Stripping is reported on Mean Dice Score for our model on testing data. 

Datasets Performance measures QuickNAT V2 ACEnet 

MALC(27 structures) Dice 0.876 ± 0.077 0.891 ± 0.057 

Jaccard 0.777 ± 0.122 0.809 ± 0.088 

Skull-stripping (Dice) – 0.987 ± 0.012 

Hausdorff Distance 4.156 ± 0.620 3.965 ± 0.553 

SchizBull 2008 Dice (test) 0.862 ± 0.095 0.881 ± 0.074 

Dice (validation) 0.862 ± 0.084 0.880 ± 0.087 

Jaccard 0.766 ± 0.131 0.796 ± 0.122 

Skull-stripping (Dice) – 0.993 ± 0.006 

Hausdorff Distance 4.347 ± 0.453 4.150 ± 0.413 
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Table 8 summarizes image segmentation performance mea- 

ured by Dice Score, Jaccard Index, and Hausdorff Distance ob- 

ained by the top-two deep learning models, i.e., QuickNAT V2 and 

CEnet on both the 2012 MALC dataset with 27 structures and 

he SchizBull 2008 dataset. These results demonstrated that ACEnet 

erformed consistently better than QuickNAT V2 in terms of Dice 
7 
core, Jaccard score, and Hausdorff Distance. The results of skull 

tripping were promising with Dice scores greater than 0.987. 

Representative segmentation results are visualized in Fig. 3 with 

oomed-in regions to highlight differences among results obtained 

y the methods under comparison. As illustrated by the results on 

he left column, ACEnet obtained visually better segmentation re- 
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Fig. 3. Representative input image slices, ground truth, and outputs of QuickNAT 

V2 and ACEnet for segmenting coarse-grained brain structures on the 2012 MALC 

dataset and the SchiBull 2008 dataset (left two columns) and fine-grained brain 

structures on the 2012 MALC dataset and the Mindboggle 101 dataset (right two 

columns), respectively. 
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ults than QuickNAT V2 for segmenting the left lateral ventricle on 

he MALC dataset. The results shown on the second left column 

ndicated that our method had better performance than QuickNAT 

2 for segmenting bilateral amygdala on the SchiBull 2008 dataset. 

As shown in Figs. 4 and 5 , statistical comparisons on Dice 

cores of individual structures also indicated that our method had 

ignificantly better performance than QuickNAT V2 for segment- 

ng most brain structures on the 2012 MALC dataset and SchiBull 

ataset ( p < 0.05, two-sided Wilcoxon signed rank test). Overall, 

wo-sided Wilcoxon signed rank tests indicated that our method 

erformed significantly better than QuickNAT V2 for segmenting 
ig. 4. Box plot of Dice scores of 27 structures obtained by ACEnet (ours) and QuickNAT  

M indicates White Matter and GM indicates Grey Matter. The star ( � ) symbol represent

ig. 5. Box plot of Dice scores of 32 structures obtained by ACEnet (ours) and QuickNAT V  

M indicates White Matter and GM indicates Grey Matter. The star ( � ) symbol represent

8 
 V2 on the 2012 MALC coarse-grained structure dataset with 15 TI MRI test scans.

s the statistical significance (p ≤ 0.05, two-side Wilcoxon signed rank test). 

2 on the SchizBull 2008 coarse-grained structure dataset with 30 TI MRI test scans.

s the statistical significance (p ≤ 0.05, two-side Wilcoxon signed rank test). 

he coarse-grained brain structures in terms of Dice score on both 

he MALC and SchiBull datasets with p values of 5 . 61 × 10 −6 and 

 . 95 × 10 −7 , respectively. 

.5. Comparison with alternative methods with 2D or 3D CNNs for 

he fine-grained segmentation 

Tables 9 and 10 summarize segmentation performance ob- 

ained by competing methods under comparison for segmenting 

ne-grained brain structures on the 2012 MALC dataset and the 

indboggle-101 dataset, respectively. As summarized in Table 9 , 

CEnet obtained a mean Dice Score of 0.762, an improvement 

f 9.6% compared with the second best method with 2D CNNs, 

.e., QuickNAT V2. The data augmentation further improved our 

ethod and achieved segmentation accuracy close to those ob- 

ained by the methods built upon 3D CNNs. It is worth noting 

hat the best model, i.e., SLANT 27, was trained on a larger train- 

ng dataset and a larger augmentation dataset. As summarized in 

able 10 , ACEnet obtained the best segmentation performance on 

he Mindboggle-101 dataset with a Dice score of 82.5% and an im- 

rovement of 4.2% compared with the second-best method, i.e., 3D 

-Net, and an improvement of 5.8% compared with QuickNAT V2. 

Table 11 summarizes image segmentation performance mea- 

ured by Dice Score, Jaccard Index, and Hausdorff Distance ob- 

ained by the top-two deep learning models built upon 2D CNNs, 

.e., QuickNAT V2 and ACEnet on both the 2012 MALC dataset 

ith 133 structures and the Mindboggle-101 dataset. These re- 

ults demonstrated that ACEnet performed consistently better than 

uickNAT V2 in terms of Dice score, Jaccard score, and Hausdorff

istance. Specifically, ACEnet obtained an improvement of 9.6% and 

.8% compared with QuickNAT V2 in terms Dice score on the 2012 

ALC dataset with 133 structures and the Mindboggle-101 dataset, 

espectively. The results of skull stripping were promising too with 

ice scores greater than 0.976. 

Representative segmentation results for segmenting the fine- 

rained brain structures are visualized in Fig. 3 (right two columns) 

ith zoomed-in regions to highlight differences among results ob- 

ained by the methods under comparison, indicating that ACEnet 

btained visually better segmentation results than QuickNAT V2 for 
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Table 9 

Comparison of deep learning methods for segmenting coarse-grained brain structures based on the 2012 MALC testing 

dataset, including segmentation accuracy measured by Dice score and the number of parameters in each model. −
indicates parameters are not reported from their respective papers, † indicates segmentation performance obtained 

from their respective papers, and ∗ indicates a model trained with data augmentation. 

Methods CNNs Parameters Dice Score (mean ±standard deviation) 

3D U-Net ( Çiçek et al., 2016 ) 3D 7 . 687 × 10 6 0.704 ±0.156 

SLANT8 ( Huo et al., 2019 ) † 3D − 0.768 ±0.011 

SLANT27 ( Huo et al., 2019 ) † 3D − 0.776 ±0.011 

Seg-Net ( de Brebisson and Montana, 2015 ) † 3D 3 . 056 × 10 7 0.725 ±0.163 

SD-Net ( Roy et al., 2017 ) 2D 5 . 7 × 10 5 0.628 ±0.205 

2D U-Net ( Ronneberger et al., 2015 ) 2D 5 . 178 × 10 6 0.688 ±0.156 

QuickNAT V2 ( Roy et al., 2018 ) 2D 3 . 551 × 10 6 0.689 ±0.161 

ACEnet 2D 4 . 142 × 10 6 0.762 ±0.136 

ACEnet ∗ 2D 4 . 142 × 10 6 0.771 ±0.134 

Table 10 

Comparison of deep learning methods for segmenting fine-grained brain structures on the Mindboggle-101 

testing dataset. 

Methods CNNs Parameters Dice Score (mean ±standard deviation) 

U-Net ( Çiçek et al., 2016 ) 3D 7 . 687 × 10 6 0.790 ±0.079 

SD-Net ( Roy et al., 2017 ) 2D 5 . 7 × 10 5 0.754 ±0.089 

U-Net ( Ronneberger et al., 2015 ) 2D 5 . 178 × 10 6 0.767 ±0.086 

QuickNAT V2 ( Roy et al., 2018 ) 2D 3 . 551 × 10 6 0.777 ±0.082 

ACEnet 2D 4 . 142 × 10 6 0.825 ±0.074 

Table 11 

Segmentation performance (mean ±standard deviation) of our methods and QuickNAT V2 on two fine- 

grained benchmark datasets. Skull Stripping is reported on Mean Dice Score for our model. 

Datasets Performance measures QuickNAT V2 ACEnet 

MALC (133 structures) Dice 0.689 ±0.161 0.762 ±0.136 

Jaccard 0.547 ±0.176 0.633 ±0.162 

Skull-stripping (Dice) – 0.987 ±0.014 

Hausdorff Distance 6.682 ±0.614 5.794 ±0.387 

Mindboggle-101 Dice (test) 0.777 ±0.082 0.825 ±0.074 

Dice (validation) 0.763 ±0.103 0.804 ±0.100 

Jaccard 0.643 ±0.107 0.704 ±0.101 

Skull-stripping (Dice) – 0.976 ±0.024 

Hausdorff Distance 6.523 ±0.382 6.454 ±0.456 

Fig. 6. Box plot of Dice scores of 133 structures obtained by ACEnet (ours) and QuickNAT V2 on the 2012 MALC fine-grained structure dataset with 15 TI MRI test scans. 

In this plot we show 25 subcortical structures for visualization. WM indicates White Matter and GM indicates Grey Matter. The star ( � ) symbol represents the statistical 

significance (p ≤ 0.05, two-side Wilcoxon signed rank test). 
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egmenting cortical areas on both the 2012 MALC dataset and the 

indboggle-101 dataset. As illustrated in Figs. 6 and Fig. 7 , statis- 

ical comparisons on Dice scores of individual structures have also 

ndicated that our method had significantly better performance 

han QuickNAT V2 for segmenting most of the brain structures on 

oth the 2012 MALC and Mindboggle-101 datasets ( p< 0.05, two- 

ide Wilcoxon signed rank test). Overall, two-side Wilcoxon signed 

ank tests indicated that our method performed significantly bet- 

er than QuickNAT V2 for segmenting the fine-grained brain struc- 

ures in terms of Dice score on both the MALC and Mindboggle-101 

atasets with p values of 3 . 22 × 10 −24 and 7 . 58 × 10 −12 , respec- 

ively. 
9 
. Discussions 

We propose a new deep learning method, Anatomy Context- 

ncoding network (ACEnet), to segment brain structures from 3D 

RI head scans using 2D CNNs enhanced by 3D spatial and 

natomical context information. Experimental results based on 

hree benchmark datasets have demonstrated that our method 

ould achieve better segmentation accuracy than state-of-the-art 

lternative deep learning methods for segmenting coarse-grained 

rain structures and comparable performance for segmentation 

ne-grained brain structures. Furthermore, the skull stripping 

odule and the two-stage training strategy also obtained promis- 
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Fig. 7. Box plot of Dice scores of 62 structures obtained by ACEnet (ours) and QuickNAT V2 on Mindboggle-101 fine-grained structure dataset with 30 TI MRI test scans. 

The top and bottom plots show the segmentation performance on structures of the left and right hemispheres, respectively. The star ( � ) symbol represents the statistical 

significance (p ≤ 0.05, two-side Wilcoxon signed rank test). 

i

o

w

a

a

w

c

(  

(  

t

2

b

w

i

T

f

u

t

w  

t  

2

r

o

u

m

m

p

n

t

H

t

m

u

a

l

p

c

g

p

3

u

c

a

b

t

i

t

i

a

t

s

2

t

s

a

p

a

t

fi

o

f

p

s

a

t

e

i

t

s

t

s

T

s

t

(

t

d

r

f

a

m

i

w

p

t

2

d

ng performance. The deep learning segmentation models built by 

ur method could segment an MRI head scan of 256 × 256 × 256 

ithin ~9 seconds on a NVIDIA TITAN XP GPU, facilitating real-time 

pplications. 

We have compared our method with state-of-the-art brain im- 

ge segmentation methods built upon 2D CNNs and 3D CNNs 

ith a focus on those built upon 2D CNNs for computational effi- 

iency. Particularly, we directly compared our method with SD-net 

 Roy et al., 2017 ), 2D Unet ( Ronneberger et al., 2015 ), QuickNAT V2

 Roy et al., 2018 ), and 3D Unet ( Çiçek et al., 2016 ). We evaluated

hese methods based on 3 publicly available datasets, including the 

012 MALC dataset with 27 and 133 brain structures, the Mind- 

oggle dataset, and the SchizBull dataset. Based on these datasets, 

e evaluated the competing deep learning methods for segment- 

ng coarse-grained and find-grained brain structures, respectively. 

he 2012 MALC dataset also provides training and testing lists to 

acilitate comparisons among image segmentation methods eval- 

ated based on the same training and testing lists. Based on 

he 2012 MALC dataset we also indirectly compared our method 

ith MO-Net ( Dai et al., 2019 ), Seg-Net ( de Brebisson and Mon-

ana, 2015 ), SLANT ( Huo et al., 2019 ), DeepNAT ( Wachinger et al.,

018 ), and 3DQuantized-Unet ( Paschali et al., 2019 ). Comparison 

esults summarized in Tables 6 and 7 demonstrated that ACEnet 

btained the best segmentation performance among all methods 

nder comparison, including those build upon 3D CNNs, for seg- 

enting coarse-grained brain structures. Comparison results sum- 

arized in Tables 9 and 10 demonstrated that ACEnet obtained 

romising performance, better than those obtained by the alter- 

ative methods built upon 2D CNNs and comparable to those ob- 

ained by the methods built upon 3D CNNs, such as SLANT 27. 

owever, ACEnet is computationally more efficient than SLANT27 

hat was trained on a larger training dataset. 

Our method is built upon QuickNAT V2 with three proposed 

odules. First, our method has a spatial context encoding mod- 

le to encode 3D spatial context information of consecutive im- 

ge slices as a multi-channel input. This module uses 2D convo- 

utional layers to extract 3D spatial context information for com- 

utational efficiency. Ablation studies indicated that this module 

ould improve the segmentation performance for both the coarse- 

rained and fine-grained brain structure segmentation tasks, sup- 

orted by quantitative evaluation results summarized in Tables 1–

 , and 4 and visualization results shown in Fig. 3 . 

Second, our method has an anatomical context encoding mod- 

le to guide 2D CNNs to focus on brain structures present in the 

enter image slices under consideration. This module consists of 

n attention factor to encode the anatomical information, learned 
10 
y optimizing an anatomical context encoding classification loss 

o identify the presence of specific brain structures in the center 

mage slices. This anatomical context encoding module improves 

he brain structure segmentation in two aspects. First, the anatom- 

cal context information acts as an attention factor that provides 

 global anatomical prior to squeeze the intensity ambiguity be- 

ween structures with similar appearances. Different from training 

eparate CNNs for segmenting different brain structures ( Huo et al., 

019 ), the attention factor facilitates a single segmentation model 

o adaptively encode anatomical information for individual image 

lices. Second, the anatomical context information also serves as 

 regularizer to guide the 2D CNNs to focus on brain structures 

resent in the center image slices under consideration, rather than 

ll brain structures to be segmented. Such a regularizer could po- 

entially make the segmentation more robust, especially for the 

ne-grained brain structure segmentation as only a small number 

f brain structure are present in individual image slices and there- 

ore yield a classification problem with unbalanced training sam- 

les. The ablation studies in conjunction with the representative 

patial-wise attention maps and image feature maps before and 

fter modulation by the sc-SE blocks shown in Fig. 2 all indicated 

hat the sc-SE blocks and the anatomical context encoding module 

ffectively im proved the image segmentation performance. 

Finally, our method has a skull stripping module as an aux- 

liary task to guide 2D CNNs to focus on brain structures rather 

han non-brain structures. The ablation studies indicated that this 

kull-stripping module could improve the brain structure segmen- 

ation performance no matter whether the end-to-end or the two- 

tage training strategies was used to training the segmentation. 

he experimental results also indicated that the two-stage training 

trategy could improve the segmentation results compared with 

he end-to-end training, consistent with findings in prior studies 

 Ren et al., 2015 ). 

The present study has following limitations. First, we did not 

une the hyperparameters of the proposed method exhaustively 

ue to high computational cost. Instead, we tuned the hyperpa- 

ameters by fixing some of them, which may lead to inferior per- 

ormance. Second, we used simple data augmentation method to 

ugment the training data. The results of SLANT indicated that 

ulti-atlas image segmentation can be used to augment the train- 

ng data, albeit computationally expensive ( Huo et al., 2019 ). We 

ill adopt deep learning based image registration methods to im- 

rove the computational efficiency of multi-atlas image segmenta- 

ion methods to augment the training data ( Li and Fan, 2017, 2018, 

020 ) in our future studies. Third, we compared our method in- 

irectly with some competing methods based on the 2012 MALC 
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ataset. Although most of the evaluations were carried out on the 

ame training and testing data (except SLANT), the comparison re- 

ults should be interpreted with a caveat that their performance is 

inged on training strategies including data argumentation. 

. Conclusions 

Anatomy Context-Encoding network (ACEnet) provides a com- 

utationally efficient solution for both the coarse-grained and fine- 

rained brain structure segmentation tasks. Our method could be 

otentially applied to other image segmentation studies, such as 

egmentation of white matter hyperintensities and brain tumors 

 Li et al., 2018 ; Zhao et al., 2018 ). 
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